®
Messvolumen der volumetrischen Wassergehaltssensoren von METER

Messvolumen der volumetrischen Wassergehaltssensoren von METER

Introduction

Einer der wichtigsten Faktoren, die bei der Auswahl eines Bodenfeuchtesensors zu berücksichtigen sind, ist das Volumen des Bodens. Es wird vom Sensor in die Messung des volumetrischen Wassergehalts (VWC) integriert. Für einige Anwendungen ist ein Sensor mit einem kleinen Messvolumen wünschenswert.

In vielen Feldsituationen ist jedoch eine signifikante Heterogenität im Boden vorhanden. Die Messung des kleinen Volumens gibt daher den durchschnittlichen volumetrischen Wassergehalt am Messort nicht angemessen wider. Diese Application Note beschreibt Testergebnisse, die zur Quantifizierung des Messvolumens der VWC-Sensoren von METER durchgeführt wurden.

Methods

The tests used to evaluate the measurement volume of the METER sensors were based on those in Sakaki et al. 2008 and are described here briefly. Each VWC sensor was suspended in air in a stationary position using a ring stand and clamp. A plane of water (water-filled, flat-sided plastic container) was then incrementally brought horizontally toward the sensor while recording sensor output. The outer edge of the measurement volume was identified as the distance where the presence of the water changed the sensor output appreciably. We repeated this process at six different sensor orientations to obtain a three-dimensional representation of the sensor measurement volume.

Results and discussion

The sensor measurement volumes are encompassed by envelopes shown in Figures 1 through 7 below. If the measurement volume for each sensor is approximated as an ellipsoidal cylinder with the dimensions measured experimentally, as Figures 1 to 7 demonstrate, then you can calculate the total measurement volumes in Table 1.

Table 1. Maximum sensor measurement volumes

It is well known that the electric field distribution inside the measurement volume is strongly weighted toward the sensor surfaces. Care should still be taken to ensure good soil-sensor contact to avoid air gaps at the sensor surface where it is most sensitive. It is also likely that electromagnetic field lines propagate further through air than through higher dielectric material (i.e., soil), so the dimensions in Figures 1 through 7 and the volumes in Table 1 should be taken as the maximum possible for each sensor. They should be good guidelines for installing the sensors near the soil surface or near a foreign object in the soil.

References

Sakaki, Toshihiro, et al. “Empirical two‐point α‐mixing model for calibrating the ECH2O EC‐5 soil moisture sensor in sands.” Water resources research 44.4 (2008). Article link.

Figure 1. Idealized measurement volume of METER 10HS sensor
Figure 2. Idealized measurement volume of METER’s 5TM and 5TE sensor
Figure 3. Idealized measurement volume of METER EC-5 sensor
Figure 4. Idealized measurement volume of METER GS1 sensor
Figure 5. Idealized measurement volume of METER GS3 sensor
Figure 6. Idealized measurement volume of METER MAS-1 sensor
Figure 7. Idealized measurement volume of METER’s TEROS 12 sensor

 

One sensor gives you three numbers, instantly

Hundreds of measurements across vast areas can be exhausting and quickly dissolve an entire research budget. Simplify the process with the economical 5TE.