Case studies, webinars, and articles you’ll love
Receive the latest content on a regular basis.
If you’re measuring saturated hydraulic conductivity with a double ring infiltrometer, you’re lucky if you can get two tests done in a day. For most inspectors, researchers, and geotechs—that's just not feasible. Historically, double ring methods were the standard, however the industry is now more accepting of faster single ring methods with the caveat that enough locations are tested. But how many locations are enough?
Drs. Andrea Welker and Kristin Sample-Lord, researchers at Villanova University, are changing the way infiltration measurements are captured while keeping the standards of measurement high. They ran many infiltration tests with three types of infiltrometers with a variety of sizes and soil types. In this 30-minute webinar, they’ll discuss what they found to be the acceptable statistical mean for a single rain garden. Plus, they’ll reveal the pros and cons of each infiltrometer type and which ones were the most practical to use. Learn:
Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum.
Dr. Andrea Welker, PE, F.ASCE, ENV SP, is a Professor of Civil and Environmental Engineering and the Associate Dean for Academic Affairs at Villanova University. She joined Villanova after obtaining her PhD at the University of Texas at Austin. Her research focuses on the geotechnical aspects of stormwater control measures (SCMs) and the effectiveness of SCMs at the site and watershed scale.
Dr. Kristin Sample-Lord, P.E., is an Assistant Professor of geotechnical and geoenvironmental engineering in the Civil and Environmental Engineering Department at Villanova University. She received her PhD and MS from Colorado State University. Her research includes measurement of flow and transport in soils, with specific focus on green infrastructure and hydraulic containment barriers.
Case studies, webinars, and articles you’ll love
Receive the latest content on a regular basis.