Case studies, webinars, and articles you’ll love
Receive the latest content on a regular basis.
Measuring soil hydraulic properties like hydraulic conductivity and soil water retention curves is difficult to do correctly. Measurements are affected by spatial variability, land use, sample prep, and more. Getting the right number is like building a house of cards. If one thing goes wrong—you wind up with measurements that don’t truly represent field conditions. Once your data are skewed in the wrong direction, your predictions are off, and erroneous recommendations or decisions could end up costing you a ton of time and money.
For 10 years, METER research scientist, Leo Rivera, has helped thousands of customers make saturated and unsaturated hydraulic conductivity measurements and retention curves to accurately understand their unique soil hydraulic properties. In this 30-minute webinar, he explains common mistakes to avoid and best practices that will save you time, increase your accuracy, and prevent problems that could reduce the quality of your data. Learn:
Our scientists have decades of experience helping researchers and growers measure the soil-plant-atmosphere continuum.
Leo Rivera operates as a research scientist and Hydrology Product Manager at METER Group, the world leader in soil moisture measurement. He earned his undergraduate degree in Agriculture Systems Management at Texas A&M University, where he also got his Master’s degree in Soil Science. There he helped develop an infiltration system for measuring hydraulic conductivity used by the NRCS in Texas. Currently, Leo is the force behind application development in METER’s hydrology instrumentation including HYPROP and WP4C. He also works in R&D to explore new instrumentation for water and nutrient movement in soil.
Case studies, webinars, and articles you’ll love
Receive the latest content on a regular basis.